搜索 猫眼电影 融媒体矩阵
  • 山东手机报

  • 猫眼电影

  • 大众网官方微信

  • 大众网官方微博

  • 抖音

  • 人民号

  • 全国党媒平台

  • 央视频

  • 百家号

  • 快手

  • 头条号

  • 哔哩哔哩

首页 >新闻 >社会新闻

AIGC检测为何频频“看走眼”?问题可能出在数据源头

2025-12-28 09:04:14
来源:

猫眼电影

作者:

江南春

手机查看

  猫眼电影记者 伊斯科 报道首次登录送91元红包

腾讯优图 投稿量子位 | 公众号 QbitAI

在AIGC技术飞速发展的背景下,只需一行简单的prompt就可生成高逼真内容,然而,这一技术进步也带来了严重的安全隐患:虚假新闻、身份欺诈、版权侵犯等问题日益突出。AI生成图像检测也成为了AIGC时代的基础安全能力。

然而在实际应用中, 存在一个“尴尬”现象:检测器往往在“考场”(公开基准数据集)上分数耀眼,一旦换到“战场”(全新模型或数据分布),性能会大幅下降。

近日,腾讯优图实验室联合华东理工大学、北京大学等研究团队在A生成图像检测(AI-Generated Image Detection)泛化问题上展开研究,提出Dual Data Alignment(双重数据对齐,DDA)方法,从数据层面系统性抑制“偏差特征”,显著提升检测器在跨模型、跨数据域场景下的泛化能力。

目前,相关论文《Dual Data Alignment Makes AI-Generated Image Detector Easier Generalizable》已被NeurIPS 2025接收为Spotlight(录取率 Top 3.2%)。

发现:AI图像检测器其实只是在“识别训练集”

研究团队认为问题的根源可能在于训练数据本身的构造方式,使得检测器并没有真正学会区分真假的本质特征,而是“走了捷径”,依赖于一些与真伪本身无关的“偏差特征”(Biased Features)来做出判断。

这些偏差特征是真实图像与AI生成图像在训练数据收集过程中产生的系统性差异。具体来说:

真实图像:来源渠道复杂,清晰度与画质参差不齐;分辨率分布分散;几乎都以JPEG 格式存储,并带有不同程度的压缩痕迹。AI生成图像:呈现出高度统一的模式,分辨率常集中在256×256、512×512、1024×1024等固定档位;并且大多以PNG等无损格式存储;画面干净,没有明显压缩痕迹。

在这样的数据构成下,检测模型可能会去学习“投机策略”,例如PNG≈假图,JPEG≈真图。这种“捷径”可以在某些标准测试集(如GenImage)上甚至可以达到100%的检测准确率,然而一旦对AI生成的PNG图像进行简单的JPEG压缩,使其在格式和压缩痕迹上接近真实图像,这类检测器的性能就会出现“断崖式下跌”。

对比真实图像和AI生成图像,两者可能存在格式偏差、语义偏差和尺寸偏差:

解法和思路

针对这一问题,研究团队认为如果数据本身带有系统性偏差,模型设计的再复杂也难免“学偏”。因此提出了DDA(双重数据对齐,Dual Data Alignment) 方法,通过重构和对齐训练数据来消除偏差。其核心操作分为三步:

像素域对齐(Pixel Alignment)

使用VAE(变分自编码器)技术对每一张真实图像进行重建,得到一张内容一致、分辨率统一的AI生成图像。这一步操作消除了内容和分辨率上的偏差。

频率域对齐(Frequency Alignment)

仅仅像素域对齐是不够的,由于真实图像大多经过JPEG压缩,其高频信息(细节纹理)是受损的;而VAE在重建图像时,反而会“补全”这些细节,创造出比真实图像更丰富的高频信息,这本身又成了一种新的偏差。

△可视化对比真实图像(JPEG75)和AI生成图像(PNG)的高频分量

实验也证实了这一点:当研究者将一幅重建图像中“完美”的高频部分,替换为真实图像中“受损”的高频部分后,检测器对VAE重建图的检出率会大幅下降。

△对比VAE重建图和VAE重建图(高频分量对齐真实图像)的检出率

因此,关键的第二步是对重建图执行与真实图完全相同的JPEG压缩,使得两类图像在频率域上对齐。

最后采用Mixup将真实图像与经过对齐的生成图像在像素层面进行混合,进一步增强真图和假图的对齐程度。

经过上述步骤,就能得到一组在像素和频率特征上都高度一致的“真/假”数据集,促进模型学习更泛化的“区分真假”的特征。

实验效果

传统的学术评测往往是为每个Benchmark单独训练一个检测器评估。这种评测方式与真实应用场景不符。

为了更真实地检验方法的泛化能力,研究团队提出了一种严格的评测准则:只训练一个通用模型,然后用它直接在所有未知的、跨域的测试集上评估。

在这一严格的评测标准下,DDA(基于COCO数据重建)实验效果如下。

综合表现:在一个包含11个不同Benchmark的全面测试中,DDA在其中 10个 上取得了领先表现。安全下限(min-ACC):对于安全产品而言,决定短板的“最差表现”往往比平均分更重要。在衡量模型最差表现的min-ACC指标上,DDA比第二名高出了27.5个百分点。In-the-wild测试:在公认高难度的真实场景“In-the-wild”数据集Chameleon上,检测准确率达到82.4%。跨架构泛化:DDA训练的模型不仅能检测主流的Diffusion模型生成的图像,其学到的本质特征还能有效泛化至GAN和自回归模型等完全不同,甚至没有用到VAE的生成架构。

无偏的训练数据助力泛化性提升

在AI生成图像日益逼真的今天,如何准确识别“真”与“假”变得尤为关键。

但AIGC检测模型的泛化性问题,有时并不需要设计复杂的模型结构,而是需要回归数据本身,从源头消除那些看似微小却足以致命的“偏见”。

“双重数据对齐”提供了一个新的技术思路,通过提供更“高质量”的数据,迫使这些模型最终学习正确的知识,并专注于真正重要的特征,从而获得更强的泛化能力。

论文地址:https://arxiv.org/pdf/2505.14359GitHub:https://github.com/roy-ch/Dual-Data-Alignment

 时事1:澳门新永利网址多少

  12月28日,单板滑雪平行项目世界杯美林站次日:意大利日本获男女冠军,李公正指出,融资租赁业务系统的核心赋能逻辑在于通过科技手段实现流程自动化、数据可视化和风控智能化。当前行业转型需借助AI技术,特别是集成内外部数据的智能风控系统和AI残值评估模型,才能有效应对租赁物合规管理等监管要求,真正实现从信息化到数字化的升级。,体育投注有哪些。

  12月28日,天津强化企业创新主体地位 培育超250家“猎豹企业”,5月7日至9日,中共中央政治局常委、国务院总理李强在新疆调研。,jdb电子网络不稳定,天博官方网站,米乐m6合法吗。

 时事2:188宝金博网址是多少

  12月28日,2025中国田径协会10公里精英赛重庆站鸣枪起跑,即便如此,美国财政部长斯科特・贝森特近期在哥伦比亚广播公司新闻节目中预测,尽管遭遇停摆,“今年美国实际国内生产总值仍将实现 3% 的增长”。,百老汇轮盘平台,威尼斯人网址多少啊,K8凯发开户网址。

  12月28日,杭州灵隐寺免门票、多个景区跟进,“门票经济”时代退潮?,该行表示,公司2026财年第三财季销售额下降符合管理层预期,和第二季相当,该行相信线下门店客流量依然受压,12月需求疲弱持续。其主要品牌耐克表示,中国的重置需要时间,滔搏和耐克紧密合作构建长期增长基础。该行相信这将转变为对滔搏的持续支持,形式包括:批发折扣及库存回购。,澳门尼斯人网址多少,yabo,线上真钱平台。

 时事3:冠竞体育

  12月28日,刚上冻就开滑?薄冰承不住“侥幸”,邓可出生于1965年10月,现已满60岁。但值得注意的是,其先后于今年4月、6月兼任了该公司首席合规官、财务负责人的职务。,365网投,美高梅体育在线,ios买球app。

  12月28日,曹德旺:中国企业家不会忘记“先天下之忧而忧,后天下之乐而乐”,最新的一条推文,则是斯诺登转发的美国第三任总统、《独立宣言》起草者杰斐逊说过的一段话:如果一个国家期望在国民无知的情况下却拥有自由,那么这种期望无论在历史上,还是未来都绝不会实现。,亿德体育网官网登录,欧洲杯赛程表视频大全,欧宝真人投注。

 时事4:九游官网首页进入

  12月28日,第九届中国文联知名老艺术家成就展在京举办,美团数据也显示,7月以来,“网球”搜索量同比去年增长超60%。网球体验课、网球培训季度课包在平台热销,美团上网球运动相关团购订单量同比激增172%。,开元棋下载app正版007,威斯尼斯人app官方下载,AG娱乐客户端。

  12月28日,韩军一基地发生炮弹爆炸,4人受伤,许仲翔称,美国的科技限制措施 “如今倒逼中国加大对硬核科技的资金投入,并走上自主创新之路”。“对于投资者而言,审慎且明智的策略是把握人工智能领域的投资机遇,并通过多元化配置来管理不确定性风险。”,银河网下载,体球网官方线上,大发888真人官网。

责编:李双全

审核:高丽萍

责编:李秀红

相关推荐 换一换