猫眼电影
猫眼电影记者 塔斯肯 报道首次登录送91元红包
腾讯优图 投稿量子位 | 公众号 QbitAI
在AIGC技术飞速发展的背景下,只需一行简单的prompt就可生成高逼真内容,然而,这一技术进步也带来了严重的安全隐患:虚假新闻、身份欺诈、版权侵犯等问题日益突出。AI生成图像检测也成为了AIGC时代的基础安全能力。
然而在实际应用中, 存在一个“尴尬”现象:检测器往往在“考场”(公开基准数据集)上分数耀眼,一旦换到“战场”(全新模型或数据分布),性能会大幅下降。
近日,腾讯优图实验室联合华东理工大学、北京大学等研究团队在A生成图像检测(AI-Generated Image Detection)泛化问题上展开研究,提出Dual Data Alignment(双重数据对齐,DDA)方法,从数据层面系统性抑制“偏差特征”,显著提升检测器在跨模型、跨数据域场景下的泛化能力。
目前,相关论文《Dual Data Alignment Makes AI-Generated Image Detector Easier Generalizable》已被NeurIPS 2025接收为Spotlight(录取率 Top 3.2%)。
发现:AI图像检测器其实只是在“识别训练集”
研究团队认为问题的根源可能在于训练数据本身的构造方式,使得检测器并没有真正学会区分真假的本质特征,而是“走了捷径”,依赖于一些与真伪本身无关的“偏差特征”(Biased Features)来做出判断。
这些偏差特征是真实图像与AI生成图像在训练数据收集过程中产生的系统性差异。具体来说:
真实图像:来源渠道复杂,清晰度与画质参差不齐;分辨率分布分散;几乎都以JPEG 格式存储,并带有不同程度的压缩痕迹。AI生成图像:呈现出高度统一的模式,分辨率常集中在256×256、512×512、1024×1024等固定档位;并且大多以PNG等无损格式存储;画面干净,没有明显压缩痕迹。
在这样的数据构成下,检测模型可能会去学习“投机策略”,例如PNG≈假图,JPEG≈真图。这种“捷径”可以在某些标准测试集(如GenImage)上甚至可以达到100%的检测准确率,然而一旦对AI生成的PNG图像进行简单的JPEG压缩,使其在格式和压缩痕迹上接近真实图像,这类检测器的性能就会出现“断崖式下跌”。
对比真实图像和AI生成图像,两者可能存在格式偏差、语义偏差和尺寸偏差:
解法和思路
针对这一问题,研究团队认为如果数据本身带有系统性偏差,模型设计的再复杂也难免“学偏”。因此提出了DDA(双重数据对齐,Dual Data Alignment) 方法,通过重构和对齐训练数据来消除偏差。其核心操作分为三步:
像素域对齐(Pixel Alignment)
使用VAE(变分自编码器)技术对每一张真实图像进行重建,得到一张内容一致、分辨率统一的AI生成图像。这一步操作消除了内容和分辨率上的偏差。
频率域对齐(Frequency Alignment)
仅仅像素域对齐是不够的,由于真实图像大多经过JPEG压缩,其高频信息(细节纹理)是受损的;而VAE在重建图像时,反而会“补全”这些细节,创造出比真实图像更丰富的高频信息,这本身又成了一种新的偏差。
△可视化对比真实图像(JPEG75)和AI生成图像(PNG)的高频分量
实验也证实了这一点:当研究者将一幅重建图像中“完美”的高频部分,替换为真实图像中“受损”的高频部分后,检测器对VAE重建图的检出率会大幅下降。
△对比VAE重建图和VAE重建图(高频分量对齐真实图像)的检出率
因此,关键的第二步是对重建图执行与真实图完全相同的JPEG压缩,使得两类图像在频率域上对齐。
最后采用Mixup将真实图像与经过对齐的生成图像在像素层面进行混合,进一步增强真图和假图的对齐程度。
经过上述步骤,就能得到一组在像素和频率特征上都高度一致的“真/假”数据集,促进模型学习更泛化的“区分真假”的特征。
实验效果
传统的学术评测往往是为每个Benchmark单独训练一个检测器评估。这种评测方式与真实应用场景不符。
为了更真实地检验方法的泛化能力,研究团队提出了一种严格的评测准则:只训练一个通用模型,然后用它直接在所有未知的、跨域的测试集上评估。
在这一严格的评测标准下,DDA(基于COCO数据重建)实验效果如下。
综合表现:在一个包含11个不同Benchmark的全面测试中,DDA在其中 10个 上取得了领先表现。安全下限(min-ACC):对于安全产品而言,决定短板的“最差表现”往往比平均分更重要。在衡量模型最差表现的min-ACC指标上,DDA比第二名高出了27.5个百分点。In-the-wild测试:在公认高难度的真实场景“In-the-wild”数据集Chameleon上,检测准确率达到82.4%。跨架构泛化:DDA训练的模型不仅能检测主流的Diffusion模型生成的图像,其学到的本质特征还能有效泛化至GAN和自回归模型等完全不同,甚至没有用到VAE的生成架构。
无偏的训练数据助力泛化性提升
在AI生成图像日益逼真的今天,如何准确识别“真”与“假”变得尤为关键。
但AIGC检测模型的泛化性问题,有时并不需要设计复杂的模型结构,而是需要回归数据本身,从源头消除那些看似微小却足以致命的“偏见”。
“双重数据对齐”提供了一个新的技术思路,通过提供更“高质量”的数据,迫使这些模型最终学习正确的知识,并专注于真正重要的特征,从而获得更强的泛化能力。
论文地址:https://arxiv.org/pdf/2505.14359GitHub:https://github.com/roy-ch/Dual-Data-Alignment
时事1:芒果体育平台下载
12月22日,大风蓝色预警:内蒙古河北等6省区部分地区阵风可达7至8级,报道继续称,亚利桑那州一家无人机操控员协会的联合创始人格雷格·雷维迪奥近期就大疆无人机禁令对8000名无人机操控员进行了调查。调查结果显示,约43%的受访者认为禁令将对其公司造成“极其负面”或“可能导致公司倒闭”的影响;约85%的受访者表示,他们的公司可能只能维持两年或更短时间。,永利网站注册。
12月22日,中央政府驻港联络办发言人:坚决支持香港特区依法对黎智英勾结外部势力危害国家安全犯罪予以惩治,主要资产管理公司的基础设施和房地产部门,如Blackstone和Brookfield,近年来已显著增加了对数据中心资产的敞口。据美国房地产投资信托基金协会数据,上市房地产公司在2024年将数据中心投资增加了15%,同时缩减了对写字楼和公寓等传统领域的投资。私人资本同样在跟进,CBRE对92家主要投资者(包括私募股权和养老基金)的调查显示,95%的受访者计划增加对数据中心的投资。,10bet十博体育,ManBetx线路检测,118六合玄机。
时事2:龙8手机版登录
12月22日,瞄准“海洋芯” 哈尔滨工程大学成立中国首家船海核领域集成电路学院,辽宁队此番客场远征,郭艾伦随队来到东莞,并参加了球队的训练。不过,这场比赛他依然没有复出。末节还剩4分多钟时,辽宁队老将李晓旭在无对抗中受伤,他单脚跳到场边后,在郭艾伦等人的搀扶下回到更衣室。,世博体育软件怎么样,亿博在线登陆,开元棋牌下载地址。
12月22日,交通运输部:预计2025年中国跨区域人员流动量超660亿人次,特朗普在 4 月的演讲中称:“我认为,多年后回首今天,你们会记住这一天,并承认我说的是对的。”,聚游棋牌官网,金沙真人app,新萄京娱乐场官网。
时事3:平博国际平台
12月22日,中新人物丨任嘉伦:我无数次梦到自己还在打乒乓球,机构对黄金后市依然保持乐观。高盛在最新报告中指出,在央行结构性高需求与美联储降息带来的周期性支撑下,预计到2026年12月,黄金价格将上涨14%,升至4900美元/盎司。,大富豪网址是多少,皇冠后备网址,完美国际官方网站。
12月22日,安踏集团与联合国难民署合作进行国际人道主义援助 惠及30万流离失所青少年,光大证券指出,AI算力与数据中心建设推动半导体销售和晶圆产能持续扩张,尤其是先进制程与HBM等高端存储快速放量,显著抬升了对高纯度、低缺陷半导体材料的长期需求。在此背景下,半导体材料行业的技术门槛和客户认证壁垒不断提高。建议重点关注在高端材料领域具备技术积累、产能规模,以及与下游晶圆厂客户深度绑定的头部企业。这类企业有望在先进制程推进和国产替代趋势下实现份额提升和盈利增长。,万博man官网登录,beplayer体育下载,澳门娱乐所有网址。
时事4:奔驰宝马电玩城下载
12月22日,园来如此丨大降温+流感高发期,怎么防?,2021年10月,在接受组织谈话时,靳东矢口否认了与李某某等商人老板之间存在不正当经济利益关系,并多次表示其所讲属实,愿承担一切责任和后果。但几十天后,被采取留置措施的靳东便将自己的严重违纪违法事实和盘托出。因亲清不分,靳东最终倒在了不法商人的“糖衣炮弹”之下,成为金钱的俘虏,走向了腐化堕落。,抢庄牛牛怎么玩赢钱几率大,每天优惠多一点,永利电玩城网站。
12月22日,管好用好政府债券 5000亿地方“补给”正在落地,佛山拥有全球最大的泛家居和建材产业链集群制造基地,陶瓷、酱油、电风扇、微波炉、消毒柜、铝型材产量世界第一。鲜明的产业底色,撑起了佛山3万亿元的工业规模。但在遭遇外部环境影响时,佛山新兴产业又尚未形成气候。,万博升级版下载,凤凰彩票平台网址,速八平台app。
责编:连茅
审核:罗杰·黄
责编:胡永凯












