猫眼电影
猫眼电影记者 凯拉克 报道首次登录送91元红包
腾讯优图 投稿量子位 | 公众号 QbitAI
在AIGC技术飞速发展的背景下,只需一行简单的prompt就可生成高逼真内容,然而,这一技术进步也带来了严重的安全隐患:虚假新闻、身份欺诈、版权侵犯等问题日益突出。AI生成图像检测也成为了AIGC时代的基础安全能力。
然而在实际应用中, 存在一个“尴尬”现象:检测器往往在“考场”(公开基准数据集)上分数耀眼,一旦换到“战场”(全新模型或数据分布),性能会大幅下降。
近日,腾讯优图实验室联合华东理工大学、北京大学等研究团队在A生成图像检测(AI-Generated Image Detection)泛化问题上展开研究,提出Dual Data Alignment(双重数据对齐,DDA)方法,从数据层面系统性抑制“偏差特征”,显著提升检测器在跨模型、跨数据域场景下的泛化能力。
目前,相关论文《Dual Data Alignment Makes AI-Generated Image Detector Easier Generalizable》已被NeurIPS 2025接收为Spotlight(录取率 Top 3.2%)。
发现:AI图像检测器其实只是在“识别训练集”
研究团队认为问题的根源可能在于训练数据本身的构造方式,使得检测器并没有真正学会区分真假的本质特征,而是“走了捷径”,依赖于一些与真伪本身无关的“偏差特征”(Biased Features)来做出判断。
这些偏差特征是真实图像与AI生成图像在训练数据收集过程中产生的系统性差异。具体来说:
真实图像:来源渠道复杂,清晰度与画质参差不齐;分辨率分布分散;几乎都以JPEG 格式存储,并带有不同程度的压缩痕迹。AI生成图像:呈现出高度统一的模式,分辨率常集中在256×256、512×512、1024×1024等固定档位;并且大多以PNG等无损格式存储;画面干净,没有明显压缩痕迹。
在这样的数据构成下,检测模型可能会去学习“投机策略”,例如PNG≈假图,JPEG≈真图。这种“捷径”可以在某些标准测试集(如GenImage)上甚至可以达到100%的检测准确率,然而一旦对AI生成的PNG图像进行简单的JPEG压缩,使其在格式和压缩痕迹上接近真实图像,这类检测器的性能就会出现“断崖式下跌”。
对比真实图像和AI生成图像,两者可能存在格式偏差、语义偏差和尺寸偏差:
解法和思路
针对这一问题,研究团队认为如果数据本身带有系统性偏差,模型设计的再复杂也难免“学偏”。因此提出了DDA(双重数据对齐,Dual Data Alignment) 方法,通过重构和对齐训练数据来消除偏差。其核心操作分为三步:
像素域对齐(Pixel Alignment)
使用VAE(变分自编码器)技术对每一张真实图像进行重建,得到一张内容一致、分辨率统一的AI生成图像。这一步操作消除了内容和分辨率上的偏差。
频率域对齐(Frequency Alignment)
仅仅像素域对齐是不够的,由于真实图像大多经过JPEG压缩,其高频信息(细节纹理)是受损的;而VAE在重建图像时,反而会“补全”这些细节,创造出比真实图像更丰富的高频信息,这本身又成了一种新的偏差。
△可视化对比真实图像(JPEG75)和AI生成图像(PNG)的高频分量
实验也证实了这一点:当研究者将一幅重建图像中“完美”的高频部分,替换为真实图像中“受损”的高频部分后,检测器对VAE重建图的检出率会大幅下降。
△对比VAE重建图和VAE重建图(高频分量对齐真实图像)的检出率
因此,关键的第二步是对重建图执行与真实图完全相同的JPEG压缩,使得两类图像在频率域上对齐。
最后采用Mixup将真实图像与经过对齐的生成图像在像素层面进行混合,进一步增强真图和假图的对齐程度。
经过上述步骤,就能得到一组在像素和频率特征上都高度一致的“真/假”数据集,促进模型学习更泛化的“区分真假”的特征。
实验效果
传统的学术评测往往是为每个Benchmark单独训练一个检测器评估。这种评测方式与真实应用场景不符。
为了更真实地检验方法的泛化能力,研究团队提出了一种严格的评测准则:只训练一个通用模型,然后用它直接在所有未知的、跨域的测试集上评估。
在这一严格的评测标准下,DDA(基于COCO数据重建)实验效果如下。
综合表现:在一个包含11个不同Benchmark的全面测试中,DDA在其中 10个 上取得了领先表现。安全下限(min-ACC):对于安全产品而言,决定短板的“最差表现”往往比平均分更重要。在衡量模型最差表现的min-ACC指标上,DDA比第二名高出了27.5个百分点。In-the-wild测试:在公认高难度的真实场景“In-the-wild”数据集Chameleon上,检测准确率达到82.4%。跨架构泛化:DDA训练的模型不仅能检测主流的Diffusion模型生成的图像,其学到的本质特征还能有效泛化至GAN和自回归模型等完全不同,甚至没有用到VAE的生成架构。
无偏的训练数据助力泛化性提升
在AI生成图像日益逼真的今天,如何准确识别“真”与“假”变得尤为关键。
但AIGC检测模型的泛化性问题,有时并不需要设计复杂的模型结构,而是需要回归数据本身,从源头消除那些看似微小却足以致命的“偏见”。
“双重数据对齐”提供了一个新的技术思路,通过提供更“高质量”的数据,迫使这些模型最终学习正确的知识,并专注于真正重要的特征,从而获得更强的泛化能力。
论文地址:https://arxiv.org/pdf/2505.14359GitHub:https://github.com/roy-ch/Dual-Data-Alignment
时事1:manbet吧
12月24日,湖南蓝山:猪粪变身“金肥料” 循环农业拓宽致富路,这也将使得当地经济结构进一步优化,面对一些制造业出现的波动或国家市场的变化,不至于受到较大的冲击。宋向清认为,郑州目前的产业结构中工业占比较重,文旅产业包括现代服务业占比较小,确实还有一定的提升空间。要与时俱进,打造一些适应消费者需求的一些新产品、新景点、新服务,让新消费与郑州新的文旅定位高度匹配。,澳门十三第网址。
12月24日,从“看天吃饭”到“知天而作” 智慧气象守护辽宁粮仓安全,耿勇也感受到农商行的合作热情。两家农商行个金部愿开通“绿色通道”,让银行高层尽快审核理财产品代销合作协议,推动彼此迅速落实系统对接与产品销售培训。,19男篮世界杯买球,九州体育网址,九州备用网址net。
时事2:大发手机版买球
12月24日,“甲骨文面”“司母戊鼎米饭”“编钟牛肉面”火出圈 创意激活文化消费新潮活力,这条推文中,斯诺登附上了“北溪”管道爆炸后,欧洲议会议员、波兰前外长西科尔斯基的推特截图。当时西科尔斯基曾发布了“北溪”管道发生事故的现场图,并配文称:“谢谢你,美国。”,森林舞会游戏打法,在线娱乐彩票官网,亿博体育官方入口。
12月24日,韩国忠清南道火电站爆炸事故已致2人受伤,——在已成功落地和正在实施的项目经验基础上,按照互利共赢、利益均衡原则深化民用核能领域合作,包括热核聚变、快中子反应堆、核燃料闭式循环,探讨以一揽子方式开展核燃料循环前端和共建核电站合作。,千亿电子网投,即时比分体球,万赢国际彩票怎么样。
时事3:赌博手机app
12月24日,海南封关首日 洋浦海事局启动24小时电子巡航守护航道安全,——深化环保合作,在跨界水体保护、环境污染应急联络、生物多样性保护及固体废物处理等领域加强合作。,皇冠体育吧,二人麻将棋牌官方网站,苹果怎么买足球。
12月24日,天山南麓378公里“气脉”成功投产,——就保护、研究、修缮、利用历史宗教设施、烈士纪念设施和历史文化遗产开展对话。,韦德体育手机APP,世界杯足球买球app,必威官网西汉姆联。
时事4:168官网买球
12月24日,“设计大家谈”系列讲座在中国艺研院开启 打造学术交流平台,这份处罚文件的公布,直接触发了上海证券交易所的相关规则,导致人福医药股票被实施其他风险警示。从12月16日起,公司股票简称正式变更为“ST人福(维权)”。,还有哪些德州app可以玩,英超买球网站,电竞竞猜app。
12月24日,无人机群飞行规划员 汇集“跨界人才”,汇川产投方面告诉记者,传统模式下,上市公司多以出资人身份参与基金,基金投资方向即便覆盖上市公司上下游,但本质是“出资人与管理人”的外部合作关系,上市公司较少将基金投资深度嵌入自身业务流程。CVC模式的核心竞争力,却源于对母公司业务逻辑与战略布局的深刻理解,基于这种理解挖掘潜在产业机会,是CVC构建差异化优势的关键所在。,体育平台app哪个最好,打牛牛游戏,球探篮球比分旧版。
责编:曾传江
审核:常舒雅
责编:赵德忠












