猫眼电影
猫眼电影记者 张晟 报道首次登录送91元红包
Canvas-to-Image 是一个面向组合式图像创作的全新框架。它取消了传统「分散控制」的流程,将身份参考图、空间布局、姿态线稿等不同类型的控制信息全部整合在同一个画布中。用户在画布上放置或绘制的内容,会被模型直接解释为生成指令,简化了图像生成过程中的控制流程。
作者:Yusuf Dalva, Guocheng Gordon Qian*, Maya Goldenberg, Tsai-Shien Chen, Kfir Aberman, Sergey Tulyakov, Pinar Yanardag, Kuan-Chieh Jackson Wang通讯作者:Guocheng Gordon Qian机构:¹Snap Inc. ²UC Merced ³Virginia Tech论文标题:Canvas-to-Image: Compositional Image Generation with Multimodal Controls项目主页:https://snap-research.github.io/canvas-to-image/arXiv:arxiv.org/abs/2511.21691
为什么要把控制方式合并到一张画布上?
在以往的生成流程中,身份参考、姿态线稿、布局框等控制方式往往被设计成互不相干的独立输入路径
身份控制需要贴一张独立的参考图;姿态控制依赖单独的骨架图;空间布局要再通过另一个模块或附加输入传给模型。
这些控制信号分别从不同通道进入模型,各自拥有独立的编码方式与预处理逻辑。结果就是:用户无法在画面的同一位置叠加多种控制信息,也无法用「一个局部区域里的组合提示」来告诉模型该怎么生成。
换句话说,传统方法的输入结构是多入口、分散式的,缺乏统一的表达空间。这使得复杂场景的构建流程变得冗长且割裂,用户只能一次提供一种控制,无法在同一个图像区域上同时表达身份 + 姿态 + 位置等组合指令。
Canvas-to-Image 正是针对这一结构性限制提出新的方案:所有控制信号都汇聚到同一张画布中,由模型在同一个像素空间内理解、组合并执行。
核心方法论
(a) 多任务画布(Multi-Task Canvas)
Canvas-to-Image 设计的关键在于——画布本身既是 UI,也是模型的输入。画布中可以出现:
一小块真实人物的图像,用于指定人物;一组简单的骨架线条,用来调节肢体姿势;框选区域,用来定义人物或物体应处的位置。
这些异构视觉符号中包含的空间关系、语义信息,都由 VLM-Diffusion(基于 Qwen-Image-Edit)直接解析。
在训练过程中,Canvas-to-Image 的多任务画布从跨帧图像集(cross-frame image sets)中自动生成。具体流程如下:
随机选取一帧作为目标图像。从其他帧中抽取目标帧所需要不同的视觉元素(人物片段,背景,姿态结构,框选区域等)。将抽取的视觉元素,按照目标帧中的相应位置,摆放在输入画布中。
这样的跨帧采样策略会在输入画布中自然引入姿态、光照、表情等方面的显著差异,使得输入提示与目标图像之间不存在可直接复用的像素对应关系。由此,模型无法依赖简单的拷贝机制来完成训练任务,而必须学习更抽象的语义关联与结构映射。这一设计在训练阶段有效规避了「抄输入」的捷径,从根本上避免了模型在推理阶段出现 copy-paste 式的生成行为。
为了保持训练的简洁性,在每一次训练中,模型只会接收到一种随机选定的控制模态(例如空间布局、姿态骨架或边界框)。这样可以让模型分别学会独立理解不同类型的控制提示,并在推理阶段自然实现多控制的组合能力。
(b) 多控制推理
在推理阶段,Canvas-to-Image 允许用户在同一张画布上灵活组合多种控制模态,例如同时提供身份参考区域、姿态骨架以及空间布局框,从而实现复杂的多控制场景生成。与传统「单一路径控制」的方案不同,用户无需在不同模块之间切换或分阶段注入条件,而是通过统一画布一次性给出所有约束信号。
从学习机制上看,模型在训练过程中仅接触到单一控制模态的样本:每个训练样本只随机激活其中一种控制形式(身份、姿态或位置),使模型分别掌握对单独控制信号的理解与对齐能力。值得注意的是,即便在数据中并不存在显式标注的「多模态组合控制」样本,模型在推理阶段仍然能够在统一画布中同时解析并整合多种控制信号:它会在身份参考的约束下保持人物外观一致性,在姿态骨架约束下生成结构合理的姿态,并在布局框条件下遵循全局空间排布。
这一现象表明,模型在统一画布表示的框架下,学到的并不是对某一种控制模态的简单记忆,而是对「画布上局部区域与目标图像结构之间关系」的更高层次建模能力。换言之,模型在仅依赖单模态训练的前提下,仍然展现出对未见过控制组合的泛化能力:在推理中面对新的、复杂的多控制配置时,依然能够生成结构一致、外观可信且各控制信号相互兼容的高质量结果。这也从实验角度验证了统一画布设计在提升组合式可控生成能力方面的有效性。
实验结果
多控制组合(Multi-Control Composition)
Canvas-to-Image 能够同时处理身份、姿态和布局框,而基线方法往往会失败。Canvas-to-Image 能:
遵循画布中给定的姿态与空间约束;保持人物外观与参考图一致;在多种控制叠加时维持整体画面的连贯性与合理性。
身份 + 物体组合
当画布中同时包含人物提示和物体提示时,Canvas-to-Image 不会把两者当作独立元素简单并置。模型能够理解两者之间应有的空间与语义关系,因而会生成具有自然接触、合理互动的场景。
此外,在多种控制叠加的情况下,Canvas-to-Image 仍能保持:
人物外观与参考图一致;物体的形状、材质和语义保持稳定;人物与物体之间的空间一致性与几何逻辑不被破坏。
因此即便在复杂的组合控制设置下,生成的画面也能呈现出连贯、可信的互动效果,而不是常见的「贴图式合成感」。
多层次场景:前景 + 背景
在给定一张背景图的情况下,Canvas-to-Image 可以通过放置参考图或标注边界框的方式,将人物或物体自然地融入场景。模型会根据画布中的提示自动调整空间关系,使插入元素在位置、光照和整体氛围上与背景保持一致,呈现近乎原生的融合效果。
消融研究
我们系统地测试了当逐步添加控制时模型的表现:
仅身份控制:模型能生成人物,但姿态和位置随机;+ 姿态控制:模型学会同时控制身份和姿态;+ 空间布局:模型能完全控制身份、姿态和位置。
关键发现:虽然训练时使用单任务画布,但模型自然学会了在推理时组合多种控制——这种涌现能力验证了我们的设计理念。
Canvas-to-Image 的核心价值是把多模态的生成控制方式全部图形化,让复杂场景的构建回归到最直观的方式:在画布上摆放、画、框,就能让模型生成对应的结构化、真实感强的画面。统一画布 + 多模态控制的范式,将有望成为下一代创作工具的基础界面形态。
时事1:九游会ag正版app
12月25日,重庆:近80幅美术作品亮相 展示中国传统山居哲学与现代人居环境,李公正强调,科技赋能正在深刻变革融资租赁业务模式。未来企业竞争力将取决于系统智能化融合能力、产业场景专业化能力和跨生态协同能力三大要素,行业应该积极拥抱数字化转型浪潮。,火狐全站官网首页。
12月25日,备孕期做CT有啥风险?医生解答,更令人震惊的是,这起案件并非简单的会计差错,而是一场由公司实控人主导、高管集体参与、资金闭环运作、刻意规避监管审查的系统性财务造假。事后,部分责任人竟试图将责任推给外部会计师事务所,声称“信赖专业机构判断”,但证监会明确驳回:“非会计专业人士”和“信赖中介”不能成为免责理由。,万博ManBetX手机网页版,球探即时比分007,大发88登陆平台。
时事2:bob登录
12月25日,香港法律周2025开幕 聚焦法律科技及大湾区协作等,李国杰作为中科曙光董事长,配偶张某华六个月内买入卖出“中科曙光”的行为,导致李国杰违反《证券法》第四十四条第一款、第二款的规定,构成《证券法》第一百八十九条所述的违法行为。,乐鱼体育主页,凯发k8官网下载客户端中心,英皇国际是真人吗。
12月25日,中国传媒大学视听艺术研究中心发布报告:微短剧赋能千行百业,是全民共创共享的文艺新形态、文化新载体,果然,在日本南端国界线上的冲之鸟礁被日本“双标”了,据《读卖新闻》透露:“尽管‘冲之鸟’周长不足100米,这次也被计算在内了。”,巴黎人视讯注册,沙巴体育注官网育,哪个网站看世界杯视频。
时事3:在线棋盘游戏
12月25日,经济前瞻论坛2025年会在北京举行,在西宁之前,西安咸阳国际机场、兰州中川国际机场、乌鲁木齐天山国际机场的扩建工程,分别于今年2月、3月、4月投入正式运营。,贝博体育平台在线登录,免费斗地主,注册可以试玩pg游戏的网站。
12月25日,联合国教科文组织国际教育局:中国在AI与STEM教育领域创新实践令人印象深刻,《星岛》从现场了解到,上述两个新项目计划于2026年集中施工,预计2027年投产。建成后,2GWh的钠电产能将有效填补市场供需缺口,推动钠电在储能、AI数据中心等场景规模化应用,降低行业对锂资源的依赖;AI机器人技术将推动工厂生产及智能化升级、公司管理效能跃迁、电池技术持续创新、构建全链路智能锂电生态。,凯时网址多少,澳门真人平台,千亿体育官网登录。
时事4:美高梅游戏线上注册
12月25日,涉及钢筋、水泥等产品 《工业产品生产许可证实施细则通则》发布,参加新时代推动西部大开发座谈会次日,马兴瑞主持召开自治区党委常委会,传达学习贯彻习近平总书记在新时代推动西部大开发座谈会上和在重庆考察时的重要讲话精神。,牛牛游戏开发,在线斗地主真钱,马会传真-综合报。
12月25日,涟漪漾成浪潮:浙江乡野的进化论与未来式,她谈到,人工智能要创造新质生产力,但绝非易事——若无法实现数倍效率与效果提升,便不能称之为新质生产力。它需要四个核心要素协同:数倍的效率效果提升、配套的生产工具、适配的生产关系,以及员工整体素质的提升。只有这四点同时满足,新质生产力才能真正落地推广。,永利轮盘登录,九线拉王app苹果,银河在线app下载。
责编:李雁
审核:克里斯蒂
责编:梅克斯












