猫眼电影
猫眼电影记者 叶发青 报道首次登录送91元红包
Canvas-to-Image 是一个面向组合式图像创作的全新框架。它取消了传统「分散控制」的流程,将身份参考图、空间布局、姿态线稿等不同类型的控制信息全部整合在同一个画布中。用户在画布上放置或绘制的内容,会被模型直接解释为生成指令,简化了图像生成过程中的控制流程。
作者:Yusuf Dalva, Guocheng Gordon Qian*, Maya Goldenberg, Tsai-Shien Chen, Kfir Aberman, Sergey Tulyakov, Pinar Yanardag, Kuan-Chieh Jackson Wang通讯作者:Guocheng Gordon Qian机构:¹Snap Inc. ²UC Merced ³Virginia Tech论文标题:Canvas-to-Image: Compositional Image Generation with Multimodal Controls项目主页:https://snap-research.github.io/canvas-to-image/arXiv:arxiv.org/abs/2511.21691
为什么要把控制方式合并到一张画布上?
在以往的生成流程中,身份参考、姿态线稿、布局框等控制方式往往被设计成互不相干的独立输入路径
身份控制需要贴一张独立的参考图;姿态控制依赖单独的骨架图;空间布局要再通过另一个模块或附加输入传给模型。
这些控制信号分别从不同通道进入模型,各自拥有独立的编码方式与预处理逻辑。结果就是:用户无法在画面的同一位置叠加多种控制信息,也无法用「一个局部区域里的组合提示」来告诉模型该怎么生成。
换句话说,传统方法的输入结构是多入口、分散式的,缺乏统一的表达空间。这使得复杂场景的构建流程变得冗长且割裂,用户只能一次提供一种控制,无法在同一个图像区域上同时表达身份 + 姿态 + 位置等组合指令。
Canvas-to-Image 正是针对这一结构性限制提出新的方案:所有控制信号都汇聚到同一张画布中,由模型在同一个像素空间内理解、组合并执行。
核心方法论
(a) 多任务画布(Multi-Task Canvas)
Canvas-to-Image 设计的关键在于——画布本身既是 UI,也是模型的输入。画布中可以出现:
一小块真实人物的图像,用于指定人物;一组简单的骨架线条,用来调节肢体姿势;框选区域,用来定义人物或物体应处的位置。
这些异构视觉符号中包含的空间关系、语义信息,都由 VLM-Diffusion(基于 Qwen-Image-Edit)直接解析。
在训练过程中,Canvas-to-Image 的多任务画布从跨帧图像集(cross-frame image sets)中自动生成。具体流程如下:
随机选取一帧作为目标图像。从其他帧中抽取目标帧所需要不同的视觉元素(人物片段,背景,姿态结构,框选区域等)。将抽取的视觉元素,按照目标帧中的相应位置,摆放在输入画布中。
这样的跨帧采样策略会在输入画布中自然引入姿态、光照、表情等方面的显著差异,使得输入提示与目标图像之间不存在可直接复用的像素对应关系。由此,模型无法依赖简单的拷贝机制来完成训练任务,而必须学习更抽象的语义关联与结构映射。这一设计在训练阶段有效规避了「抄输入」的捷径,从根本上避免了模型在推理阶段出现 copy-paste 式的生成行为。
为了保持训练的简洁性,在每一次训练中,模型只会接收到一种随机选定的控制模态(例如空间布局、姿态骨架或边界框)。这样可以让模型分别学会独立理解不同类型的控制提示,并在推理阶段自然实现多控制的组合能力。
(b) 多控制推理
在推理阶段,Canvas-to-Image 允许用户在同一张画布上灵活组合多种控制模态,例如同时提供身份参考区域、姿态骨架以及空间布局框,从而实现复杂的多控制场景生成。与传统「单一路径控制」的方案不同,用户无需在不同模块之间切换或分阶段注入条件,而是通过统一画布一次性给出所有约束信号。
从学习机制上看,模型在训练过程中仅接触到单一控制模态的样本:每个训练样本只随机激活其中一种控制形式(身份、姿态或位置),使模型分别掌握对单独控制信号的理解与对齐能力。值得注意的是,即便在数据中并不存在显式标注的「多模态组合控制」样本,模型在推理阶段仍然能够在统一画布中同时解析并整合多种控制信号:它会在身份参考的约束下保持人物外观一致性,在姿态骨架约束下生成结构合理的姿态,并在布局框条件下遵循全局空间排布。
这一现象表明,模型在统一画布表示的框架下,学到的并不是对某一种控制模态的简单记忆,而是对「画布上局部区域与目标图像结构之间关系」的更高层次建模能力。换言之,模型在仅依赖单模态训练的前提下,仍然展现出对未见过控制组合的泛化能力:在推理中面对新的、复杂的多控制配置时,依然能够生成结构一致、外观可信且各控制信号相互兼容的高质量结果。这也从实验角度验证了统一画布设计在提升组合式可控生成能力方面的有效性。
实验结果
多控制组合(Multi-Control Composition)
Canvas-to-Image 能够同时处理身份、姿态和布局框,而基线方法往往会失败。Canvas-to-Image 能:
遵循画布中给定的姿态与空间约束;保持人物外观与参考图一致;在多种控制叠加时维持整体画面的连贯性与合理性。
身份 + 物体组合
当画布中同时包含人物提示和物体提示时,Canvas-to-Image 不会把两者当作独立元素简单并置。模型能够理解两者之间应有的空间与语义关系,因而会生成具有自然接触、合理互动的场景。
此外,在多种控制叠加的情况下,Canvas-to-Image 仍能保持:
人物外观与参考图一致;物体的形状、材质和语义保持稳定;人物与物体之间的空间一致性与几何逻辑不被破坏。
因此即便在复杂的组合控制设置下,生成的画面也能呈现出连贯、可信的互动效果,而不是常见的「贴图式合成感」。
多层次场景:前景 + 背景
在给定一张背景图的情况下,Canvas-to-Image 可以通过放置参考图或标注边界框的方式,将人物或物体自然地融入场景。模型会根据画布中的提示自动调整空间关系,使插入元素在位置、光照和整体氛围上与背景保持一致,呈现近乎原生的融合效果。
消融研究
我们系统地测试了当逐步添加控制时模型的表现:
仅身份控制:模型能生成人物,但姿态和位置随机;+ 姿态控制:模型学会同时控制身份和姿态;+ 空间布局:模型能完全控制身份、姿态和位置。
关键发现:虽然训练时使用单任务画布,但模型自然学会了在推理时组合多种控制——这种涌现能力验证了我们的设计理念。
Canvas-to-Image 的核心价值是把多模态的生成控制方式全部图形化,让复杂场景的构建回归到最直观的方式:在画布上摆放、画、框,就能让模型生成对应的结构化、真实感强的画面。统一画布 + 多模态控制的范式,将有望成为下一代创作工具的基础界面形态。
时事1:世界杯投注官方app
12月20日,新华述评·2025中国经济回眸|坚持在开放合作中育新机拓新局——中国与世界共享机遇共同发展,通报显示,钟自然丧失理想信念,背弃初心使命,对党不忠诚不老实,对抗组织审查,不信马列信鬼神,搞迷信活动;,真人版天天诈金花。
12月20日,《密云水库水源保护条例》施行 京冀携手执法,家住北京朝阳区的资深网球爱好者张先生在接受《环球时报》记者采访时感慨,“原来就不好预约的网球场,在郑钦文夺冠后,更不好约了。”他说:“我经常打球的球馆最早预约时间是提前一周的早上七点,但是现在到点就秒没,手一慢就显示预约完毕。”,世界杯怎么去投注球队,小米世界杯投注,凤凰娱乐。
时事2:起点国际 蛊真人
12月20日,杭淳开高速衢州段开工 浙赣省际大动脉建设提速,违背组织原则,不如实报告个人有关事项,在组织函询时不如实说明问题,在干部选拔、职工录用工作中为他人谋取利益并收受财物;,365bet备用app,澳门新威斯人游戏网址是多少,大赢家足球推荐网。
12月20日,签约31个项目总投资超62亿元 第五届诏商大会在福建诏安举行,“实际上就是‘打样’。”李瀚明认为,国泰开航证明了乌鲁木齐机场具备保障顶级航司的能力,会产生示范效应。国泰飞得好,其他国际顶级航司,以及东亚、东南亚的航司都会考虑跟进。除了证明机场的保障能力,也是新疆以此为契机,对外释放开放活力的强烈信号。,大阳城集团下载,必赢亚洲手机网页,爱博好玩吗?。
时事3:AG8亚洲游戏国际平台
12月20日,《康雍乾三朝通纪》发布 收录200余幅珍贵图像资料,曾文莉认为,在职业选手商业价值充分释放后,其成功效应才会吸引更多的人群尤其是青少年从事网球运动,而这是中国网球经济发展的根基。,三六五体育网app,吾悦国际真人cs,ag手机版官网。
12月20日,自由式滑雪U型场地世界杯云顶站:谷爱凌夺冠,兰州和乌鲁木齐之前都只有一条跑道,因起降架次多,乌鲁木齐一直是国内最繁忙的单跑道机场之一。扩建后可以极大缓解这几座机场的现有压力。,ag真人哪里可以玩,M6米乐官方,易博体育平台。
时事4:金沙登录网址
12月20日,中国西藏—尼泊尔国际航线推介会在加德满都举行,北京、上海、广州是3大全方位门户复合型功能的国际航空枢纽,成都、深圳、重庆、昆明、西安、乌鲁木齐、哈尔滨是7大区位门户复合型功能的国际航空枢纽。,威尼斯人入口,九五至尊竞彩官网,凯发在线平台官方网站。
12月20日,铁路部门在京张高铁8趟列车试点推出“雪具便利行”服务,在西北机场的你追我赶中,西安和乌鲁木齐最引人注目。两座机场不仅扩建规模最大,定位也更高。,云顶买球,365体育比分,线上赌钱网。
责编:金连胜
审核:陈振忠
责编:刘翔宇












