猫眼电影
猫眼电影记者 魏良鹏 报道首次登录送91元红包
12月2日消息,继今年10月提出“发现式智能”理念后,盛大集团创始人陈天桥近日发表深度文章,剖析了人工智能对企业基因的重构。在文中,他表示:未来的企业变革不是基于AI的“更好的管理”,而是“管理的退出”。
陈天桥指出,现代管理学的大厦实际上建立在“生物局限性”的沼泽之上。KPI、科层制、激励机制等经典工具,本质上都是为了给人类大脑打上的“补丁”,是一个试图在心智失效前锁定正确性的“纠偏系统”。他认为:“当执行不再依赖生物特征时,基于生物特征构建的制度大厦,其历史使命便已终结。”
对于正在崛起的“智能体(Agent)”,陈天桥将其定义为在“认知解剖学”上与人类完全不同的新物种,具备“连续记忆、全息认知、内生进化”三大特征。他警告称,如果将这种新物种强行塞进旧的管理容器,只会引发“系统性的排异反应”:KPI将从导航变为“天花板”,层级结构将从过滤器变为阻断信息的“血栓”。
陈天桥表示:“管理学不会消失,但它将第一次真正建立在智能(Intelligence)的地基之上,而非生物学(Biology)的废墟之上。”(袁宁)
以下为陈天桥深度文章全文:
管理学的黄昏与智能的黎明:重写企业的生物学基因
文/陈天桥
引言:管理学的黄昏
管理学大师彼得·德鲁克曾说,动荡时代最大的危险不是动荡本身,而是延续昨日的逻辑行事。
今天,我们就站在这样一个危险的临界点。
从系统演化的角度来看,管理学本身就不是一个永恒的真理,这并非因为管理学理论本身的缺陷,而是因为它所服务的对象——碳基生物的大脑在即将被智能体所替代时,管理学存在的前提也会被物理性地移除。
所以,未来的企业变革不是基于 AI 的“更好的管理”,而是“管理的退出”。这不关乎对错,这关乎结构的必然。当执行不再依赖生物特征时,基于生物特征构建的制度大厦,其历史使命便已终结。
第一章:历史的代偿——管理即“纠偏系统”
现代管理学的大厦,实际上是建立在一片名为“生物局限性”的沼泽之上。过去一百年,我们所推崇的全部管理工具,本质上都是为了给人类大脑打上的“补丁”:
我们发明 KPI,并非因为它能精准衡量价值,而是因为人类大脑难以在长周期中锁定目标,“遗忘”是碳基生物的常态,我们需要路标;
我们发明科层制(Hierarchy),并非因为它高效,而是因为人类的工作记忆只能处理7±2个节点,为了避免认知超负荷,我们被迫通过层级来压缩信息;
我们发明激励机制,并非为了创造价值,而是为了对抗生物体天然的动机衰减与熵增。
管理学从未真正提升组织的“智能”。它是一个精密的“纠偏系统”,试图在人类心智失效之前,用制度锁定正确性。
当执行依赖人类时,企业是一个为适配大脑缺陷而构建的制度容器。
第二章:智能体的介入——一种全新的“认知解剖学”
那么,我们要引入的替代者究竟是什么?
请大家注意,当我说“智能体(Agent)”时,我指的不是一个运行速度更快的软件,而是一种在认知解剖学(Cognitive Anatomy)上与人类完全不同的存在。
如果我们将人类员工与智能体放在解剖台上对比,你会发现三处根本性的生理差异:
第一,是记忆的连续性。
人类的记忆是瞬时且易碎的,我们依赖睡眠重置,上下文经常断裂。而智能体拥有 EverMem(永恒记忆),它拥有的不是片段的工作流,而是连续的历史。它不会遗忘,不需要“交接”,它的每一次推理都建立在全量历史的基座之上。
第二,是认知的全息性。
人类受限于带宽,必须通过层级来过滤信息。而智能体拥有全量对齐(Context Alignment) 能力。它不需要通过部门周会来同步信息,整个组织的知识网络对它实时透明。它看到的是全局,而非盲人摸象般的局部。
第三,是进化的内生性。
人类的动力依赖于多巴胺和外部奖赏,容易衰减。而智能体的行动源于奖励模型(Reward Model)的结构张力。它不需要被“哄”着工作,它的每一次行动都是为了让目标函数收敛。
这不是更强的员工,这是基于不同物理法则运转的新物种。
第三章:基石的崩塌——当新物种遇到旧容器
现在,当我们把这种具备“连续记忆、全息认知、内生进化”的新物种,强行塞进为人类设计的旧管理容器时,会发生什么?
系统性的排异反应开始了。那些曾经支撑现代企业的五大基石,正在从“必要的保障”异化为“智能的束缚”:
KPI 的崩塌:从“导航”变为“天花板”
我们要 KPI,原本是因为人类容易迷路。但对于时刻锁定目标函数的智能体而言,死板的 KPI 指标反而限制了它在无限解空间中寻找更优路径的可能性。这就好比你给自动驾驶汽车画死了一条轨道,却期待它能躲避突发的障碍。
层级结构的崩塌:从“过滤器”变为“阻断器”
我们要层级,原本是因为人类大脑处理不了太多信息。但对于能处理千级上下文的智能体,层级结构不再是过滤器,而成了阻碍数据自由流动的“血栓”。在智能网络中,任何中间层都是对信息的无谓损耗。
激励机制的崩塌:从“动力源”变为“噪音”
用外在激励去驱动智能体,就像试图用糖果去奖励万有引力一样,是无效且滑稽的。它不需要多巴胺,它需要的是精准的数据反馈。
长期规划的崩塌:从“地图”变为“模拟”
我们要五年规划,是因为我们无法在高频变化中维持长周期的推演。但在智能体手中,静态的战略地图被实时的世界模型模拟(World Model Simulation)所取代。既然能每秒钟推演一万次未来的可能性,为什么还要死守那张半年前打印出来的旧地图?
流程与监督的崩塌:从“纠偏”变为“冗余”
传统的监督机制,原本是为了盯着人别犯错。但在智能体内部,理解即执行,感知即行动。监督不再基于对执行过程的怀疑,而是基于对目标定义的再校准。
第四章:终极形态——AI-Native 企业的五项根性定义
如果抛弃了这些生物学的拐杖,一家真正的 AI-Native 企业,它的终极形态究竟长什么样?
这不再是关于一家公司应该购买什么软件,而是关于一家公司应该以何种生物学形式存在。真正的 AI-Native 企业,必须在基因层面完成以下五项重写:
1. 架构即智能(Architecture as Intelligence)
传统企业架构是社会学产物,旨在解决人际摩擦。而 AI-Native 的架构是计算机科学产物。
整个组织本质上是一个巨大的、分布式的计算图(Computational Graph)。部门不再是权力的领地,而是特定功能的模型节点;汇报线不再是行政命令的通道,而是高维数据流转的总线。企业架构的设计目标,从“管控风险”转变为“最大化数据吞吐与智能涌现”。
2. 增长即复利(Growth as Compounding)
传统增长依赖线性的人力堆叠,边际成本随规模递增。AI-Native 增长依赖认知复利。
智能体的核心特征是“零边际学习成本”。一次成功的边缘案例处理,其实验结果会瞬间同步给全网智能体。企业的估值逻辑将彻底改变——不再取决于 headcount 的规模,而取决于认知结构复利的速度(Rate of Cognitive Compounding)。
3. 记忆即演化(Memory as Evolution)
没有记忆的智能只是算法,拥有记忆的智能才是物种。
传统企业的记忆是离散且易碎的“死数据”。AI-Native 企业必须拥有一个可读写、可进化的长期记忆中枢(Long-term Memory)。所有的决策逻辑、交互历史与隐性知识,都被实时向量化,沉淀为组织的“潜意识”。这是企业实现时间结构(Temporal Structure)的基础,也是智能跨越时间进行自我演化的前提。
4. 执行即训练(Execution as Training)
在旧范式中,执行是消耗过程,价值交付即终点。在 AI-Native 范式中,执行是探索过程。
不存在单纯的“执行部门”,所有部门本质上都是“模型训练部门”。每一次业务交互,都是对企业内部“世界模型”的一次贝叶斯更新(Bayesian Update)。业务流即训练流,行动即学习。
5. 人即意义(Human as Meaning)
这是企业伦理的重构。人类从“燃料”的角色中退出,升维为“意图策展人(Intent Curator)”与“认知架构师(Cognitive Architect)”。
智能体负责在无限的解空间中解决“如何做(How)”的问题,进行路径的极值优化;而人类负责处理那些不可计算的模糊性——定义“为何做(Why)”,定义审美、伦理与方向的价值函数(Reward Function)。智能负责扩展可能性的边界,人类负责裁定方向的意义。
结语:智能的黎明
这与我们在科学领域提出的发现式智能(Discoverative Intelligence)殊途同归。
发现式智能的核心定义是:智能不应止于对既有知识的拟合,而应具备构建模型、提出假设、并在与世界的交互中修正认知的能力。
AI-Native 企业,正是发现式思维在组织层面的投射。它要求企业本身成为一个发现式结构的平台,而非操作流程的容器。
如果组织的形式正在发生物种级的演化,那么承载它的数字容器也必须随之突变。
这就引出了一个我们不得不面对的命题:我们脚下的基础设施——那些为了固化流程而生的 ERP,那些为了切割职能而建的 SaaS——真的还能容纳这种液态的智能吗?这些系统本质上是旧时代管理逻辑的数字化投影,它们通过“打补丁”的方式或许能带来暂时的安宁,但这终究是在用旧地图寻找新大陆。
AI-Native 企业呼唤一种全新的操作系统。 一种不再致力于“资源规划(Resource Planning)”,而是致力于“认知演化(Cognitive Evolution)”的全新神经系统。
当管理退出,认知升起。
管理学不会消失,但它将第一次真正建立在智能(Intelligence)的地基之上,而非生物学(Biology)的废墟之上。
未来的企业,不再是由人领导智能,而是由智能扩展人。
本文来自网易科技报道,更多资讯和深度内容,关注我们。
时事1:球探体育比分app苹果版下载
12月24日,江西南昌:成群候鸟鄱阳湖畔栖息觅食,从「密度法则」的科学化理论、架构创新,到 MiniCPM 端侧大模型与高效工具链研发,再到在汽车、手机、智能家居等终端领域规模化落地,面壁智能已逐步形成「理论-模型-工具-应用」的全链路技术生态闭环与产业向心力,持续加速端侧智能的商业化进程。,大赢家的网址是多少。
12月24日,越冬白天鹅“栖居”山西长治漳泽湖国家城市湿地公园,12月5日,金证股份钐烽科技执行总经理李公正出席本届年度峰会,并在“科技租赁:‘融资+融物’支持科技自立自强”主题论坛上发表主旨演讲,演讲的主题是《融资租赁业务系统,赋能租赁业务转型发展》。,6686体育,聚力体育直播,云顶娱乐手机登陆。
时事2:中欧官方彩票网站
12月24日,第十八届闽台陈靖姑民俗文化交流活动福州启动,保守派媒体人也开始议论纷纷,《每日连线》高级编辑卡伯特·菲利普斯(Cabot Phillips)就质疑称:“吉尔·拜登和道格·埃姆霍夫相互问候……用嘴唇相贴的吻?这……正常吗?”,球探体育,实况2020欧洲杯,J9赌神赛。
12月24日,五色成韵!从文物中看东方色彩之美,摩根大通预计,2026年黄金ETF的净新增持仓量约为250吨,金条与金币的年需求将再次超过1200吨。截至2025年9月底,投资者通过ETF、实物黄金及COMEX期货持有的黄金,已占全球股票、债券(不含央行储备)及另类资产管理规模(AUM)的约2.8%。摩根大通分析师认为,未来几年这一占比有望提升至4%–5%。,m6体育app,完美体态官网,皇冠好玩吗?。
时事3:葡京平台提现
12月24日,“阅见花城 活力广州”融合共创活动举行,尽管需求旺盛,但供应端正面临多重挑战。数据中心行业正在努力应对低迷的劳动力市场,这可能导致施工队伍人员短缺。同时,建筑材料的供应链正受到关税威胁,而电力获取在许多地区仍是一个巨大的问号。,体育买球官网,凯发k8旗舰厅真人版,正规外围足彩app。
12月24日,杭州灵隐寺免门票 浙江多景区跟进,据英国广播公司(BBC)2月9日报道,泽连斯基访英之际,乌英两国领导人会晤讨论“双管齐下的英国对乌援助”,其中包括立刻增加军火援助以应对俄军春季攻势,以及强化长期支持。此外,泽连斯基还在白金汉宫会见了英国国王查尔斯三世,并在英国议会下议院发表演讲。,赌博评级,狗万app下载,巴黎人网站注册官网。
时事4:m6米乐怎么开户
12月24日,聚焦劳动教育,北京海淀举办中学生劳动技能大赛,亿纬锂能的首个机器人产业园区,规划了5万平方米的AI和机器人创新研发中心,覆盖机器人研发、试制、中试、总装及技能培训的量产研发全流程。,FG电子官网,老手换新账号网赌,BET九州登录官方网址。
12月24日,宁波海关查获万余只侵权玩偶 含《疯狂动物城》等热门IP,截至目前,1名落水救援人员已被救起。另外1名救援人员和溺水者失踪,当地正在全力搜救。,天天斗地主新版,十大真钱网赌,羽毛球比分网即时比分。
责编:陈建元
审核:梁薇
责编:赵灵儿












