机器之心报道
机器之心编辑部
刚刚,Erdos 问题 #124 的一个弱化版本被证明。
这个问题自 1984 年在《算术杂志》上发表的论文 「整数幂集的完备序列」 中提出以来,近 30 年一直悬而未决
证明该问题的是普林斯顿大学数学博士 Boris Alexeev ,使用了来自 Harmonic 的数学 AI 智能体 Aristotle运行了这个问题,智能体最近更新了更强的推理能力和自然语言界面。
关于该问题的一些报道都声称AI独立解决了该问题的完整版本,事实却并非如此,产生了很多争议。Boris Alexeev 为此进行了修正:
在 Formal Conjectures 项目中,该猜想有一个正式声明。不幸的是,该声明中有一个拼写错误,其中注释在显示式方程中显示为 「≥1」 ,而相应的 Lean 声明为 「= 1」。(这使得声明变弱了。)因此,我也修正了这个问题,并包含了对修正后声明的证明。最后,我删除了我认为是不必要的声明方面,Aristotle 也证明了这一点。正如 DesmondWeisenberg 所提到的,存在一个涉及幂次 1(这里对应个位数)的问题,这意味着 [BEGL96] 中的猜想与此不同。我相信 [Er97] 中的版本与这里的陈述相符,部分原因在于它缺少 [BEGL96] 中明显必要的最大公约数条件。我目前无法获取 [Er97e] 来检查其中的陈述。考虑到Aristotle 的成就,这个问题如此微妙,实在不幸!
尽管如此,数学智能体独立地证明了 Erdos 问题#124的较简单版本,仍然表现了令人惊讶的数学证明能力。
Erdos 问题 #124 内容如下图所示,由于该证明存在微妙的错误,目前仍是一个开放问题。
Erdos 问题 #124 链接:https://www.erdosproblems.com/forum/thread/124
数学 AI 智能体 Aristotle 是一个一个用于自动形式化和形式验证的 API。根据 Harmonic 的介绍,其具备利用 IMO 金牌级引擎解决最复杂的推理问题的能力;可以自动将英语陈述和证明转换为经过验证的 Lean4 证明;能够无缝集成到项目中,自动利用用户的整个定理库和定义、依赖项以及 Mathlib。
Aristotle 链接:https://aristotle.harmonic.fun/
在 Erdos 问题 #124 的讨论中,tsaf 简要介绍了 Aristotle 针对该问题的证明方法,称其「出奇的简单」
有关详细的证明过程,感兴趣的读者可以参考:
https://github.com/plby/lean-proofs/blob/main/ErdosProblems/Erdos124.md
对于 AI 独立进行完整的数学难题的证明,陶哲轩进行了深度的关注。在该问题下,也能看到他的评论。
陶哲轩对于 AI 工具在数学领域的观点仍然一以贯之,他认为像许多其他真实世界中的分布一样,数学中的未解决问题也呈现出典型的「长尾」结构
在数学的未解决问题中有很多没有得到关注的相对容易的问题,借助人工智能的强大自动化能力和推理能力去规模化地尝试攻克这些问题,就会有许多「低垂的果实」唾手可得。
陶哲轩在去年运行 Equational Theories Project 时亲眼见证了这一点。
这个项目攻击了普遍代数中 2200 万个蕴含式。利用简单的自动化方法的最初几轮扫描,在几天内就解决了其中相当大的一部分;随后又使用越来越复杂的方法,逐步攻克那些在早期扫描中顽固抵抗的剩余实例。最后的少数几个蕴含式则花费了数月的人类努力才最终解决。
陶哲轩在这个项目中取得了大规模自动化数学研究的宝贵经验,他以个人日志的形式完整记录了研究的详细过程,方法,结果和个人的思考。
日志链接:https://github.com/teorth/equational_theories/wiki/Terence-Tao's-personal-log
Erdos 问题网站也是类似的例子。该网站目前收录了 1108 个在至少一篇埃尔德什论文中提出过的问题;其中当然包含一些极其困难的经典难题,但也有大量更偏门的问题,甚至连 Erdos 本人都没怎么关注过。
与 Equational Theories 的经验类似,陶哲轩现在也开始采用自动化方法,集中清理掉最底层的「低垂果实」。
几周前,网站上一批仍被标注为未解决的问题突然被划为「已解决」:AI 驱动的文献搜索工具发现,它们的解答其实早已存在于文献中。正在研究这些问题的数学家们也结合使用 AI 工具和形式化证明助手,来用 Lean 验证已有证明、生成这些问题关联的整数序列项,或补全某些方案中缺失的推理步骤。
陶哲轩认为,Erdos 问题#124的证明属于另一类「低垂果实」,是由于描述中的技术性疏漏,而变得意外容易解决的问题。
具体来说,Erdos 问题 #124 在三篇论文中被提出过,但其中两篇漏掉了一个关键假设,导致问题在那两种表述下直接成为一个已知结果(Brown 判别法)的推论。然而,这一点直到 Boris Alexeev 使用 Aristotle 工具处理该问题时才被发现。Aristotle 在数小时内就自主找到并(用 Lean)形式化了该弱化版本的解答。
目前,研究者正系统性地扫描网站上的剩余问题,以寻找更多类似的误述或快速的解决方法。这些努力短期内仍主要集中在「长尾」的最末端。
然而,这已经显示出自动化工具能力的不断增强,并在另一层面上帮助了研究这些问题的人类数学家:通过清除最容易的部分,使真正困难的问题更加清晰地呈现出来。
或许,从 AI 能够独立解决数学问题开始,我们就已站在数学领域深刻变革的边缘。
数学领域 Vibe 证明的时代已经悄然而至。
《欧宝娱乐怎么了》,《首次登录送91元红包》世界杯买球app靠谱吗
“五星体育斯诺克”
ag百家了乐网站
……
{!! riqi() !!}
“宝盈娱乐城”{!! reci() !!}
↓↓↓
{!! riqi() !!},连霍高速交通事故致9死7伤 应急管理部派工作组赴现场指导处置,米乐m6平台官方版客服,凯时国际app登录,雷速体育下载,万博备用网址
{!! riqi() !!},看不见世界 那就让世界看见我们 “喂喂喂”足球队的滚烫人生,杏彩网站多少,火狐官网网址,ope体育客户端官方网站,2026世界杯买球app下载
{!! riqi() !!},海南自贸港封关后 首批外籍人士领取来华工作和居留许可,体育投注送88,盈鑫国际,MG真人在哪玩,手机彩票平台大全
{!! riqi() !!}|全岛封关瞰海南:自贸港重点园区巡礼|必威手机app登录|世界杯购买模式|线上手机菠菜平台|博狗足球
{!! riqi() !!}|香港特首李家超:对大埔火灾“追责到底”|米6体育app官方下载|贝博|贝博网投平台|银河官方下载
{!! riqi() !!}|吉林长春:民众体验AI中医与智慧生活|bet365好玩吗?|正规炸金花游戏|火星棋牌唯一官方|澳门永利贵宾厅……
{!! riqi() !!},巴基斯坦媒体:中国的发展轨迹展示出了两点,六合财经B加大版,2026年世界杯下注,云顶娱乐手机网上登录,至尊赌博
{!! riqi() !!},全国残特奥会赛事将全面展开 近8000名运动员参赛,优乐官网,火狐体育平台怎么样,万博官方网站登陆,上真人充值
{!! riqi() !!}|陕西:“一县一策”激活发展动能|哪个网站买世界杯好看|体球网官方线上|绝密精选A|理财婆
{!! riqi() !!},中国传媒大学视听艺术研究中心发布报告:微短剧赋能千行百业,是全民共创共享的文艺新形态、文化新载体,美高梅的娱乐网站,买球的网站,天博直播视讯,2026世界杯全球投注额
{!! riqi() !!},今年前11个月 全国装备制造业销售收入同比增长8.3%,必赢网站多少,澳门威尼斯登陆,ManBetx旧版,e世博官方网站
{!! riqi() !!},国家消防救援局指导广东消防支援香港多台套救援装备,最火赌博app,必威体育官网app,欧洲杯预选赛程,芒果体育平台app
{!! riqi() !!}|受权发布丨中华人民共和国国家通用语言文字法|BET9官网注册|乐鱼体育是正规平台吗|彩票吧|澳博电子网投
{!! riqi() !!}|“从文学到影像”优秀文学作品推介在京举行 助推好故事“跨界生长”|体育平台怎么赚钱最快|乐动体育在线官网|365bet体育官方app|188体育电子网投
{!! riqi() !!}|西安网评:从“倡导”到“条例”,全民阅读何以升格|bob体彩综合|六合财经D加大版|九游会旧版网址|世界杯转播权 网站
{!! reci() !!},{!! reci() !!}|2026年元旦假期火车票今日开售|下载注册送58元|bet365在哪开户|PG电子游戏网站是什么|百老汇官网地址
监制:邓金木
策划:赖晗
主创:唐征宇 林箴贺 陈佛烘 颜亦阳 陈林韵
编辑:王家菁、段圣祺