猫眼电影
猫眼电影记者 亨利·基辛格 报道首次登录送91元红包
在大模型赛道逐渐从“参数竞赛”走向“能力竞赛”的当下,一个显著的变化正在发生:开源模型开始在越来越多关键能力维度上逼近、甚至冲击顶级闭源模型。
12月1日,DeepSeek同步发布两款正式版模型——DeepSeek-V3.2DeepSeek-V3.2-Speciale,前者在推理测试中达到GPT-5水平,仅略低于Gemini-3.0-Pro,而后者在IMO 2025等四项国际顶级竞赛中斩获金牌。
V3.2在工具调用能力上达到当前开源模型最高水平,大幅缩小了开源模型与闭源模型的差距。
据官方介绍,V3.2是DeepSeek首个将思考融入工具使用的模型,在“思考模式”下仍然支持工具调用。该公司通过大规模Agent训练数据合成方法,构造了1800多个环境、85000多条复杂指令的强化学习任务,大幅提升了模型在智能体评测中的表现。
V3.2证明了一件事:通过正确的架构+数据策略+工具融合设计,开源模型完全有能力成为世界级选手。Deepseek研究员苟志斌在社交平台X上发帖称:
如果说Gemini-3证明了持续扩大预训练规模依然有效,那么DeepSeek-V3.2-Speciale则证明了在超大上下文下进行强化学习扩展是可行的我们花了一年时间把DeepSeek-V3推到极限。得到的经验是:后训练的瓶颈,是靠优化方法和数据而不是靠等待一个更强的基础模型来解决的
DSA突破性能瓶颈,“思考+工具调用”策略带来质的飞跃
这次的核心飞跃,来自两大底层创新。
第一个是DeepSeek Sparse Attention(DSA)稀疏注意力机制,DeepSeek两个月前在实验版(V3.2-Exp)中引入的一项关键结构。
该稀疏注意力机制有效解决了传统注意力机制在长序列处理中的效率瓶颈,将注意力复杂度从O(L²)降低至O(Lk),同时保持模型性能。
在架构层面,DSA采用闪电索引器和细粒度Token选择机制两大组件。闪电索引器计算查询Token与历史Token之间的索引分数,决定哪些Token被选中;细粒度Token选择机制则基于索引分数检索对应的键值条目。该机制基于MLA的MQA模式实现,确保计算效率的同时维持模型表现。
在大量用户对比测试中发现:V3.2-Exp在任何场景中都没有明显弱于 V3.1,稀疏注意力不仅没有损失能力,反而大幅提升了效率和响应质量。这意味着,模型可以:看得更“远”、想得更“深”、却用更少的计算资源。
第二,DeepSeek-V3.2提升显著的关键在于训练策略的根本性改变。以往版本采用"直接调工具"的简单模式,而V3.2创新性地实现了"思考+调工具"(Thinking in Tool-use)的融合机制。
DeepSeek-V3.2 成为首个在“思考模式”下仍然支持工具调用的模型。也就是说,它不再是一看到问题马上用工具,而是变成:先分析、再规划、再调用工具、再验证、再修正。
这种表现更接近人类的“思考-行动-反思”闭环,为复杂任务(如搜索、写代码、修 Bug、规划项目)带来了指数级的能力上升。
数据策略的改变:1800+环境+8.5万条复杂指令
至于模型为什么突然变强这么多?本质上,是训练策略彻底升级了。
DeepSeek搭建了一条全新的大规模数据合成流水线,生成1800多个环境和85000多条高难度指令,专门用于强化学习。
这种“冷启动+大规模合成数据RL”的训练方法,让模型在复杂任务如代码修复、搜索等场景中的泛化能力大幅提升。通过构造“难解答、易验证”的强化学习任务,模型学会了在推理过程中有机融合工具调用。
这种方式的核心价值在于:不再依赖真实人类标注,而是构造“极限题库”锤炼模型能力。
结果也非常清晰:在代码修复、搜索路径规划、多步骤任务中,V3.2 的泛化能力大幅领先过往版本,甚至接近闭源商业模型。
在思考上下文管理方面,V3.2采用专门针对工具调用场景的优化策略。历史推理内容仅在新用户消息引入时被丢弃,而在工具相关消息(如工具输出)添加时保持推理内容,避免了模型为每次工具调用重复推理整个问题的低效行为。
强化学习规模化显著增强模型能力,后训练算力超过预训练的10%
DeepSeek-V3.2采用可扩展的强化学习框架,后训练计算预算超过预训练成本的10%,这一资源投入为高级能力的释放奠定了基础。
该公司在GRPO(Group Relative Policy Optimization)算法基础上引入多项稳定性改进,包括无偏KL估计、离策略序列掩码、保持路由等机制。
在专家蒸馏阶段,该公司为每个任务领域开发专门的模型,涵盖数学、编程、通用逻辑推理、智能体任务等六个专业领域,均支持思考和非思考模式。这些专家模型通过大规模强化学习训练,随后用于产生领域特定数据供最终检查点使用。
混合RL训练将推理、智能体和人类对齐训练合并为单一RL阶段,有效平衡了不同领域的性能表现,同时规避了多阶段训练常见的灾难性遗忘问题。对于推理和智能体任务,采用基于规则的结果奖励、长度惩罚和语言一致性奖励;对于通用任务,则使用生成式奖励模型进行评估。
大模型“权力结构”正在改变!
在与海外几大模型的对比中,DeepSeek-V3.2展现出显著的性能优势。在推理能力方面,V3.2在AIME 2025测试中达到93.1%的通过率,接近GPT-5的94.6%和Gemini-3.0-Pro的95.0%。在HMMT 2025测试中,V3.2得分92.5%,与顶级闭源模型差距进一步缩小。
在智能体能力评测中,V3.2的表现尤为突出。在代码智能体任务SWE-Verified中获得73.1%的解决率,在Terminal Bench 2.0中达到46.4%的准确率,显著超越现有开源模型。在搜索智能体评估BrowseComp中,通过上下文管理技术,V3.2从51.4%提升至67.6%的通过率。
在工具使用基准测试中,V3.2在τ2-Bench中获得80.3%的通过率,在MCP-Universe中达到45.9%的成功率。值得注意的是,V3.2并未针对这些测试集的工具进行特殊训练,显示出强大的泛化能力。相比之下,同期开源模型如MiniMax-M2-Thinking在多项测试中的表现明显落后。
DeepSeek-V3.2 的发布背后,其实是一个更大的信号:闭源模型的绝对技术垄断正在被打破,开源模型开始具备一线竞争力。
这具有三层意义:
对开发者:成本更低、可定制性更强的高性能模型已出现;对企业:不必再完全依赖海外 API,也能构建强大 AI 系统;对产业:大模型军备竞赛从“谁参数大”,升级为“谁方法强”。
而DeepSeek,此时站在了最前排。
时事1:乐橙国际注册
12月28日,日本民众希望继续租借大熊猫 中方回应,在这一轮扩张中,甲骨文表现得尤为激进。根据最近的公开文件,该公司资产负债表外背负着2480亿美元的未来租赁承诺。这一庞大的资本支出计划也曾在本月早些时候引发市场震荡,导致甲骨文股价在宣布增加AI基础设施支出后大幅下跌。,贝博网址登录。
12月28日,又迎丰收!全年粮食生产实现高位增产,泽连斯基在英国议会讲话时继续呼吁伦敦提供先进战斗机,“自由会赢,我们知道俄罗斯会输。”他在威斯敏斯特大厅对一群英国议会议员以及官员说,英国与乌克兰会一起走向“我们一生中最重要的胜利”。,英国365bet提现要多久,万博max官网地址,新运博网址。
时事2:k8k8
12月28日,一景一坚守,一路一家国!《奔跑吧・天路篇》让家国情怀成为文旅综艺的“价值内核”,该行分析师在一份报告中指出:“2025年是供应严重受阻的一年,数个大型矿山遭遇了重大的运营挑战。”并补充道:“总体而言,我们认为市场处于明显的供应短缺状态。”,亚新体育外围,彩票网送体验金,体育平台app排名。
12月28日,此行间·中央经济工作会议上,总书记提到一个重大任务,要增强中欧班列大通道功能,促进沿线产业发展,特别是推动重点园区建设,营造良好产业生态;,体育投注送体验,凯发娱乐手机版官网登录,开元棋盘是真的吗。
时事3:体育投注网站
12月28日,欧盟-西巴尔干峰会举行:分歧信号显现 塞尔维亚首次不派代表与会,“从以往反补贴调查案例来看,欧委会此次披露的临时关税水平基本符合预期。”屠新泉表示,中国纯电车型在欧洲性价比优势明显,加征关税后预计短期可能会对中国车企出口量有影响,但“不至于让中国车企完全出不去”。,9游会网站登录,亚娱注册彩金,乐动体育网页版。
12月28日,南京大屠杀88周年 华侨华人悼念遇难同胞祈愿和平,反弹行情在绝望中酝酿而生,当锂价击穿“一体化”矿石提锂企业成本线后,行业终于迎来转机。,m6米乐登录官网,永利网址怎么打不开,体育开户平台。
时事4:亿博手机登录
12月28日,香港漫游记:在沙田马场感受“港式速度与激情”,12月23日金融一线消息,上海金融监管局发布关于陈放民生通惠资产管理有限公司首席风险管理执行官任职资格的批复,核准陈放民生通惠资产管理有限公司首席风险管理执行官的任职资格。,斗地主赢话费,AG8亚洲国际官网,类似万博的大平台。
12月28日,科尔沁农家女的突围:画笔为刃 破茧成蝶,决心虽坚,但挑战也不小。中信建投面临的首要问题就是缺少鸿蒙开发人才,而鸿蒙团队也迅速响应、提供了诸多支持,为中信建投开发团队组织专项培训,帮助他们用时三个月就推出了首个Beta版本,跑出了传统金融业拥抱新生态的“鸿蒙速度”。,爱游戏体育最新入口,美高梅金狮会网址,365体育欧洲版本。
责编:罗雅尔
审核:波顿戈尔·穆昆丹
责编:赵保












